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The work, addressing subsonic, supersonic and hypersonic boundary-layer insta- 
bility, is motivated by the need for more understanding of compressible transition 
at high global Reynolds numbers Re. In  the supersonic case, the so-called ‘first 
modes ’ of instability found/suggested by previous Orr-Sommerfeld computations 
can be identified as triple-deck oblique ones, directed outside the local wave-Mach- 
cone directions. Less oblique instability modes inside are not of Orr-Sommerfeld 
form since they are substantially affected by non-parallel flow effects. The maximum 
linear growth rates are determined for a range of supersonic and subsonic free-stream 
Mach numbers M,, and comparisons are made with previous computations, showing 
fairly good agreement a t  moderate Mach numbers. A second mound of unstable 
wavenumbers and frequencies is also evident. I n  addition, the nonlinear version is set 
up and emphasized (with attention drawn to a recent paper by the author (1988a) 
showing the possibility of nonlinear break-up), and certain extremes are examined 
including those of transonic and hypersonic boundary layers. In  the hypersonic limit 
a new regime is found (for many conditions, including the insulated plate), namely 
M ,  - Re&, in which non-parallel-flow effects enter to control the main disturbances, 
and it is concluded that the restriction M ,  4 Re& applies to the Orr-Sommerfeld 
approach. This is a very severe restriction in practice. 

1. Introduction 
There is much renewed technological and scientific interest currently in supersonic 

and hypersonic flows, in addition to the subsonic regime, and in compressible 
boundary-layer instability and transition in particular. Although relatively few 
experimental results on supersonic boundary-layer transition are available (see 
Laufer & Vrebalovich 1960 ; Pate & Schueler 1969 ; Kendalll975 ; Lysenko & Maslov 
1984), a fairly large body of interesting computational results exists due to Mack 
(1975, 1984, 1986 and references therein), principally, and Malik (1982. 1987) and 
others, concerning the linear viscous and inviscid instability of two-dimensional 
compressible boundary layers a t  various Mach numbers. A major finding from these 
computations a t  large Reynolds numbers is that, typically, as the Mach number is 
increased, the instability features are dominated by the so-called ‘first mode ’ up to 
a Mach number of about 4 and by the ‘second mode’ thereafter, with the first modes 
having their maximum growth rates for oblique three-dimensional waves and being 
described as viscous, whereas the second modes are mainly inviscid and the 
maximum growth rates are for the two-dimensional waves. 

The reasons for the current investigation of subsonic, supersonic and hypersonic 
boundary-layer instability are four-fold. First we present an alternative approach for 
the first-mode response based on assuming that the characteristic global Reynolds 
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number (Re) is a large parameter. This has the double advantage of turning the 
parallel-flow approximation for the basic flow into a rational step, as opposed to the 
convenient but rather suspect irrational step it represents (strictly) in the previous 
Orr-Sommerfeld- type computations, and of providing an asymptotic framework, 
understanding and results with which the previous computations can be compared : 
see later. Second, the soundness of the Orr-Sommerfeld approach with regard to  the 
neglect of non-parallel-flow effects is re-examined, leading to the (severe) limitation 
(1.2) below. Third, the work shows that the first modes described above are in fact 
of the viscous-inviscid interactive kind and are governed generally by the subsonic 
or supersonic triple-deck structure extended to three-dimensional unsteady motions, 
just as for the incompressible Tollmien-Schlichting case (e.g. Smith 1979a, 6 ;  Smith 
& Stewart 1987; see also Smith 1988a) in effect, except that in the supersonic case 
these first modes of instability must be three-dimensional and be directed outside of 
the local wave-Mach-cone directions, i.e. a t  wave angles 8 satisfying 

where M ,  is the local Mach number of the external stream. Any unstable three- and 
two-dimensional supersonic waves that are less obliquely inclined are found to suffer 
from strong non-parallel-flow effects (see $ 5) because their lengthscales are much 
greater, comparable with the development length of the basic compressible boundary 
layer. Fourth, the present approach opens the way readily to the study of the non- 
linear responses which are vital to subsonic, supersonic or hypersonic transition. Such 
responses can be catered for in the nonlinear three-dimensional unsteady triple-deck 
equations, or in their finite-Re counterpart, the interacting boundary-layer equations. 

In  more detail, $2 below gives, for supersonic flow, the scales involved for the first 
modes and the governing equations, which are cast in the nonlinear triple-deck 
mould first, for three-dimensional unsteady motion, with the linearized version then 
providing the required large-Re asymptote for the Orr-Sommerfeld problem, subject 
to the condition in (1 .1) .  Section 3 then presents the numerical results and compares 
these with the previous computations. The agreemcnt turns out to be reasonably 
encouraging, qualitatively and quantitatively, bearing in mind the asymptotic 
nature of the theory on the one hand and, on the other, the violation of the 
restrictions ( 1 . 1 )  and (1.2) below by the previous Orr-Sommerfeld computations, 
among other things. We devote $4 to  a study of the various extremes of interest, one 
being for a second mound of instability which is seen to emerge during the 
calculations of $3, a mound that seems to have received scant attention previously 
and is different from the second modes mentioned above. Another extreme of much 
practical and theoretical concern is the hypersonic limit where M ,  becomes large, 
and there the first modes’ main wavelengths elongate considerably, forcing non- 
parallel-flow effects to enter play at leading order when M ,  becomes as large as 
Re$ (in many cases, including that of an insulated wall: see $5). Thus the validity of 
the parallel-flow approximation, which is a t  the heart of the Orr-Sommerfeld 
approach for example, is restricted to M, 4 Re$ or, in terms of the local Reynolds 
number R, based on the boundary-layer thickness and R = Re;, the restriction is 

M ,  -g R!, i.e. M ,  4 d. (1.2) 

This extra limitation found on the use of the Orr-Sommerfeld approach for first 
modes is a very severe one in practice. For a typical R of 1500, for instance, (1.2) 
formally restricts the Mach-number range to M ,  4 4.3, thereby casting doubt on the 
numerous previous computations a t  higher Mach numbers up to 10 and beyond. 
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Other extremes addressed in $4 concern transonic flow, high frequencies, and the 
cut-off implied by (1.1). All these extremes add analytical support to  the numerical 
work of $3. Further discussion, including the subsonic version, is presented in $5 .  

Regarding notation, we use the velocity components u, v, w, the corresponding 
Cartesian coordinates x, y, z, the pressure p, the density p and the time t non- 
dimensionalized with respect to the free-stream speed uZ, the typical streamwise 
length l*,pzuz2, the free-stream density pZ and l*/uZ. The subscripts a, w stand 
for the free-stream and plate values respectively. Here the boundary layer is taken 
to be the two-dimensional steady one on an aligned flat plate y = 0, x > 0, with 
characteristic scales x - 1, y - Re-: at general O(1) free-stream Mach numbers M , ,  
where the Reynolds number Re = u z  l * / v z  is large. The boundary-layer profiles of 
the temperature T*, of p ( =  R, say), of u (=  U ,  say), and of Mach number, are 
smooth (e.g. see Stewartson 1964) with T* varying from the plate temperature T: to 
the external temperature TZ, the ratio Tz/TZ is generally O ( l ) ,  and the Chapman 
viscosity law is assumed for definiteness, so that ,u*/T* = C,uZ/T$ (=  ,uz/T:), where 
C is constant and p* is the viscosity p*v* (see e.g. Stewartson 1964). It should be 
emphasized that virtually all the above assumptions can be relaxed to cater for the 
more general boundary layer, however, since only the local external and plate 
conditions substantially affect the present instabilities at any chosen station (x, z )  = 
(xo,zo) with x, of O(1) [subsequently we take x, = 1,  this essentially fixing Z *  and Re]. 
In  particular, the plate may be insulated or a t  prescribed temperature; see also a 
note in $2 with regard to the energy equation. Also, h z 0.332~;; is the local skin- 
friction factor, E is used to denote Re-: for convenience, and the subscripts r, i stand 
for the real and imaginary parts respectively, while C.C. stands for the complex 
conjugate. 

2. Scales and governing equations 
The first modes in supersonic boundary-layer instability are three-dimensional, of 

the viscous-inviscid Tollmien-Schlichting (TS) kind, we argue, and they take on the 
triple-deck form a t  large Reynolds numbers Re along and near the lower branch that 
is of interest here. Thus their normal y-variation exhibits three main scales, with 
y - e5(M2, - l)-@z/T:)$ in the lower deck which is the viscous sublayer containing 
the critical layer effectively, y e4((ll7':/T$) in the main deck comprising most of the 
boundary layer, and y - e3(M2, - l ) - ~ ( T : / T ~ ) ~  in the upper deck of potential flow just 
outside the boundary layer. The expansions of the flow solution in the decks can be 
picked out from previous work on supersonic triplc-deck interactions (e.g. Stewartson 
& Williams 1969 ; Stewartson 1974), but extended to three-dimensional unsteady 
motion, and as a reminder we summarize the expansions and scalings below, noting 
that the procedure used first sets up the more general nonlinear unsteady interaction, 
from which the linear instability problem is readily deduced. An alternative 
procedure is to  obtain the linear problem directly from the linearized Navier-Stokes 
equations or from the Orr-Sommerfeld approximation, although the latter is not 
strictly rational at finite Re values. Both procedures have been followed in previous 
incompressible-instability studies (Smith 1979a, 6, 1985, 1986 ; Smith & Stewart 
1987 and see $ 5  below for the subsonic counterpart), incidentally, but the nonlinear 
approach has the obvious advantage of initially posing, and emphasizing, a problem 
more relevant to  transition ultimately (e.g. see the nonlinear break-up process 
described by Smith 1988a) than is linear instability theory. 

The first-mode lengthscale (I,%, say) is O(Re&), long compared with the boundary- 
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layer thickness but short relative to the O( 1) development length of the boundary 
layer, and the timescale is also fast relative to the maximum convective scale, 

(2.1 UPC) 

( 2 . 2 c )  

( 2 . 2 4  

Here and below the factors involving C, A ,  M,, TZ/TZ are introduced to normalize 
the resultant governing equations, which from the Navier-Stokes equations are 

ux+ V,+W, = 0, ( 2 . 3 ~ )  

ut + uu, + vu, + wu, = -P , (X ,  2, f) + u,,, (2 .3b )  

w;+uwx+ vw,+ww, = -Pz(X,Z,t")+Wyy, ( 2 . 3 ~ )  

in the lower deck, with the y-momentum equation yielding the result that aP/aY = 

0. A reminder concerning the energy equation should be noted, namely that its 
influence is of higher order, as Stewartson & Williams (1969) show, since the 
temperature and density are effectively uniform (and generally 0(1) in non- 
dimensional terms) across the lower deck as this deck forms only a small fraction of 
the original boundary layer. The principal boundary conditions here are 

U = V = W = O  a t  Y = 0 ,  ( 2 . 3 d )  

u - Y+A(X,  Z, l ) ,  W + O  as Y+ co, ( 2 . 3 e )  

for no slip a t  the solid surface and for matching with the main deck, -A representing 
the unknown relative displacement. Next, the main deck has y = e4Cf(T$/Tz>) ?? and 
merely transmits the small displacement effect across the boundary layer as well as 
smoothing out the induced velocity component w, in the form 

= U , ( ~ ) + E C ~ ( T ~ / T : , ~ ( M ~ , -  i)-b-Miy- 0 Y)+...> ( 2 . 4 ~ )  

(2.4b) W = -&ffht(Jp m - 1):A x U,(??) +. . . > 

w = 6 2  Ciht(M2 , - q-iy 4 fw/5!':) * DR,(O)/R,(y") U,(g) + , . . , ( 2 . 4 ~ )  

p - p ,  = €2C~ht(M2,-1)-:P(X,Z, t")+ ..., (2.4d) 

with a similar small displacement occurring in the density and temperature profiles. 
Here the unknown function D ( X ,  2, t") satisfies D, = - Pz from the spanwise 
momentum balance and ( 2 . 4 ~ )  shows the jet-like response in the cross-flow due to the 
spanwise variation in the pressure, the velocity w reaching its maximum amplitude 
inside the lower deck. The third, upper, deck then occurs where y = e3K,(ML - 1)-+y 
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with similar O ( 2 )  perturbations of the uniform density and temperature. These yield 
the supersonic quasi-steady potential-flow equation and main matching conditions, 
for zero incident wave, 

(M2, - 1 )  (@? -pg) -@L = 0, ( 2 . 6 ~ )  

P ( ~ ) - + O  as y+m, (2 .6b )  

( 2 . 6 ~ )  

Subject to suitable far-field conditions of boundedness, the nonlinear problem for 
U ,  V ,  W ,  P ,  A in ( 2 . 3 ~ - e )  is closed, therefore, by the P - A  pressure-displacement law 
implied by ( 2 . 6 a ~ c )  controlling $"(X,  y, 2, f). This law can be expressed in the form 
of a double integral but the above formulation turns out to be more convenient. 
Computational solutions of the whole nonlinear three-dimensional unsteady 
interaction governed by (2.3u-e), (2.6a-c) would be of much interest as well as 
nonlinear analysis, as in the subsonic case: see also $5, and we note in addition the 
recent work by Smith ( 1 9 8 8 ~ )  with regard to the possible finite-time break-up of the 
nonlinear interactive system. 

We turn now to the linearized instability properties, to connect up and compare 
with previous work. With a relatively small disturbance of order h and a normal- 
mode decomposition, so that 

( U , V , W , P , A )  = ( Y , 0 , 0 , 0 , 0 ) + { h ( 0 , d , @ , F , A " ) E + c . c . ) + O ( h 2 ) ,  ( 2 . 7 )  

with 

where a,p are the normalized streamwise and spanwise wavenumbers and SZ is the 
normalized frequency, the governing equations (2.3a-c) reduce to 

iab + dy + i@ = 0, 

E = exp [i (aX - pZ - SZl)], (2.8) 

( 2 . 9 ~ )  

- i Q b + i a Y O + d  = -iaP+byy, (2 .9b )  

-iQ@+iaYW = -ipF+Wyy, ( 2 . 9 ~ )  

subject to u = V = W = O  at Y = O ,  (2.9d) 

O+K, @-to as Y + W .  (2.9e) 

- 

Here the supersonic interaction in (2.6a, b )  yields 

p(2)  = hF exp[-{p2/(M2,- 1 ) - a 2 } ~ ~ ] 1 + c . c .  (2.10a) 

provided 

Hence the interaction law between 

Re {p2/ (M2,  - 1 )  - a2}i > 0. (2.10 6 )  

and A is 
{ p 2 / ( ~ 2 ,  - 1 )  - az}iF = azA" (2.10c) 

from ( 2 . 6 ~ ) .  Following earlier instability analysis (Smith 1979a, b and references 
therein) we obtain from (2.9a-c) the solution 

(aO+/3@)y = BAi(f ) :  f [=  ( ia ) iY+<o,  f [  = - i i~/a8,  (2.11a) 

where Ai denotes the Airy function, ii = exp (in/6) and B is an unknown constant, 
and then the no-slip and displacement conditions require 

&ia)kAi'(&,) = i(a2++P2)P, (2.11 b )  
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FIGURE 1. Neutral subsonic and supersonic stability, showing the dependence of the neutral 
wavenumber aN on the Mach number M ,  and the spanwise wavenumber 8. 

- a1 
0.04 

0.02 

0 4 8 12 
sl 

FIGURE 2 (a) .  For caption see facing page. 

( 2 . l l c )  

in turn. So the combination of ( 2 . 1 0 ~ )  and (2.11 b, c) gives the eigenrelation 

(ia)i(az++z) = (Ai'/K)(to){,82/(M2, - 1)-a2}; (2.12) 

between a, +, 1;2 for normal modes, given the definitions in @.lob) ,  (2.11 a,  c). 
The next section describes first the spatial instability properties, resulting from 

(2.12) with Q , p  kept real and so a is in general complex, and second the temporal 
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FIGURE 2. Normalized spatial growth rates - a, versus frequency 0 for various p, and 
(a) M ,  = 2 ,  (6) 3, (c )  4. Comparisons with the analysis in $4 are also included. 
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FIQUKE 3. Maximum normalized spatial growth rates y, versus /3 at (a)  M ,  = 4 2 ,  ( b )  2 ,  ( e )  4, 
for the first and second instability humps, along with comparisons from $4. 

instability where a, /3 are real and Q is complex. The more general instability problem 
where /I, a are both complex could also be addressed. Again, it is observed that non- 
parallel-flow effects along the plate are taken into account through the slow 
dependence on x in the scalings such as (2.2), as in Smith (1979u, b) .  We finish this 
section by noting that the case of neutral stability, where all of a, /3,Q [ = aN, /3, a,] 
are real, occurs for ,go = -d,  ii, (Ai’/K) (,go) = d, if 

(d, x 2.3, d, x 1 .O, see e.g. Drazin & Reid 1981 . 
implying the relation 

- 

a&; +/I*, = d,{p”/(N: - 

Q, = d ,a i .  

The dependence of these neutral conditions on 

Miles 1960; Smith 1979a, b),  

) - a;>$, ( 2 . 1 3 ~ )  

(2.136) 

/I (here /I20 without loss of 
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generality), and the corresponding subsonic results, are summarized in figure 1 and 
can be compared with subsequent computations. The result ( 2 . 1 3 ~ )  may be 
expressed conveniently as a quadratic equation for p2 in terms of a N ,  and we observe 
that neutral waves are confined to the range a\ < d ; / [ M : ( M 2 , -  l ) ] .  Also, the 
constraint 

a < p(M: - l ) - t  (2.14) 

holds for neutral or temporal instability/stability waves, in view of (2 .10b) ,  meaning 
that the directions of such waves lie outside the wave-Mach cones a t  any particular 
point. Waves travelling inside the wave-Mach lines by contrast are stable as regards 
viscous-inviscid first modes and their growth or decay is decided on the 0(1) 
lengthscale in 2, where, as mentioned in $8 1 ,  5 ,  non-parallel-flow effects matter 
considerably. 

3. Results and comparisons 
The properties of the eigenrelation (2 .12)  can be found in terms of the Tietjens 

function, for example as tabulated by Miles (1960), but for computation we preferred 
to go back and solve the ordinary differential equations (2 .9a+) in the form 

ia( Y - Q/a) i = i,, ( 3 . l a )  

for the skewed shear ? = (aU+pW),, with 

?JO) = i (a2+p2)P,  ?(m) = 0, ?dY = a x  f ( 3 . l b 4 )  

and with ( 2 . 1 0 ~ ) .  Here we converted ( 3 . 1 ~ )  to two first-order equations for .? and 
QI = .?, and then two-point finite differences were taken in Y, with second-order 
accuracy. The differenced representation of (3.1 a 4 )  was solved as a boundary-value 
problem for using inversion of a tridiagonal matrix and Newton iteration to 
satisfy the p-a law (2 .10c ) ,  determining a for a given real 52,p (spatial stability 
case) or 52 for real a,p (temporal stability). Grid-size checks were made by 
performing the calculations on grids of 101 x 0.1, 201 x 0.1 and 201 x 0.05 in Y, the 
results from which were found to differ hardly a t  all in the present graphical 
terms. 

Results for spatial instability are presented in figures 2-5. In  figure 2 ,  ai values are 
plotted against real 52 for a number of prescribed values of the spanwise wavenumber 
p, a t  representative Mach numbers. Sample checks provided by the limiting cases 
studied later are also shown. Figure 3 shows a sample of the corresponding maximum 
normalized growth rates -ai = g,(p, M,) resulting from the calculations such as in 
figure 2 ,  as functions of p, M,. For each Mach number M ,  the values a, = a,, p = 
PI at which g, is maximum ean be deduced and hence the obliqueness angle 8, = 
tan-' (p,/a,) of maximum norma?ized growth rate is found, as a function of Mach 
number, as presented in figure 4 along with other main quantities. Comparisons with 
Mack's (1975, 1984, 1986) predictions for R( = Re:) = 1500 are made in figure 5 .  The 
agreement found, although not especially close at the larger Mach numbers for 
reasons given subsequently, is not unreasonable, particularly in view of the various 
limitations present, as discussed in $ 5  below : for example, the TS limitations (2 .14)  
and (5.4) below [or (1.2) above], requiring 8, > tan-'{(M:-l)i} (an inviscid 
criterion) and M ,  4 Z& in turn according to the present theory, are both violated by 
the finite-Reynolds-number computations as M ,  increases and as 8, dips below the 
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FIGURE 4 ( a , b ) .  For caption see facing page. 
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FIGURE 4. Maximum normalized spatial growth rates. (a )  Growth rates (max gl), ( b )  corresponding 
streamwise wavenumbers a,, (c) corresponding spanwise wavenumbers p, and wave angles O,, 
versus M , .  The transonic and hypersonic limits from $4  are also shown. 

inviscid cut-off curve. Again, the major differences in growth-rate? predictions occur 
during the higher-M, regime, further suggesting the increasing impact of the 
restriction (5.4) [or (1.2)] there on the Orr-Sommerfeld calculations. 

A similar treatment applies for temporal instability as shown in figures 6-9. 
Figure 6 displays graphs of the growth rate 0, versus real 01 for various p values, a t  
two sample Mach numbers M,. Figure 7 then shows the maxima g,(p, M,) of the 
normalized temporal growth rates us. p a t  various Mach numbers, with figure 8 
giving the resulting dependence on Mach number of the maximum normalized 
growth rate, i.e. maxg,, and the obliqueness angle 0, = tanp1 (/3,/01,) for that 
maximum temporal growth rate, achieved a t  01 = 01,,p = p,, say. Comparisons with 
Mack’s (1975, 1984, 1986) results as shown in figure 9 are again not unreasonably 
close and seem not too discouraging a t  this stage especially in view of the comments 
and criticisms given in the previous paragraph and in §5. 

Apart from the not too large disagreements with the Orr-Sommerfeld com- 
putations and their explanations above via (2.14) and (5.4) a number of other notable 
features arise in the results above. These are principally the double-hump formation 
in the growth-rate curves in figures 2 and 6 for increased p and the behaviour of the 
solutions in the extremes of Mach number, Ma-+ co and M ,  + 1 f . These motivate 
the work in the next section. 

t The growth rates here are given by G K q1/c3K,,  with K ,  defined in (2.1 e )  bringing in the extra 
Mach-number and temperature-ratio dependence. 
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FIQURE 6. Temporal normalized growth rates and analytical comparisons. (a) M ,  = 2 /2 ,  ( b )  3. 
Dashed curves are from Case IV, $4. 

4. Limiting cases : extreme wavenumbers, transonic flows, and hypersonic 
flows 

Here we investigate certain limiting cases of concern, partly to check the 
computational results and partly to indicate some further interesting developments. 
Hypersonic ( M ,  % 1) and transonic ( M ,  --f 1 )  flows are considered as Cases I and I1 
below, followed by extreme spanwise wavenumbers (Case 111), the cut-off (Case IV), 
high frequencies as Case V and the second-hump formation as Case VI. For 
definiteness we concentrate mostly on supersonic spatial instability, although the 
temporal and subsonic cases are quite similar and their corresponding results are 
used in certain figures. 

Case I : hypersonic $ow Here M ,  $ 1 and the instability properties as given by 
(2.12) take on an intriguing character. The main features revolve around the small 

for &p,d of 0(1) ,  and (2.12) reduces to the form 

i!&p = (Ai'/K)(&)(p-&z)t, c0 -iiG&. (4.2) 

The major physical difference here is that the streamwise pressure gradient aP/aX 
a i a p  becomes negligible in the lower deck, with the wave angle shifting close to 90" 
and the length and time scales all increasing. The solutions for the hypersonic limit 
(4.2) are displayed in figure 10 (see also figure 7 d  in the temporal case) and confirm 
that the maximum growth rate is captured by the regime (4.1). As p increases the 
growth rate -E ,  eventually falls. I n  addition the double-hump formation comes 
back into play, as can be verified by analysis of (4.2) for large 1, analogous to the 
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FIGURE 7 .  Maximum normalized temporal growth rates g2 versus /l, for the first and second 
instability humps at, ( a )  M ,  = 3, ( b )  2, (c) 1.7, ( d )  + co. 

second-hump analysis for O(1) values of /3 given in the next paragraph. For small 1, 
on the other hand, 

predominantly, where from (4.2) d, is given by 

OZ - p-pdi,+. . . , Q = @do, (4.3a) 

26, = [ii(~/Ai')([~)]', i0 = - i tdo,  (4.3b) 

so that again the growth rate -di tends to zero. The results (4.3~2, b )  are in accord 
with (2.13) a t  the neutral condition where ti,, = O,do = d,, and also with Case V 
below for large do. 

The presence of the second mound of instability can be inferred from (4.2) for large 
1, or, as a more general alternative, from completely examining O( 1) values of ,!l when 
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FIGURE 8. Maximum normalized temporal growth rates (maxg,) versus Mach number (plus 
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FIGURE 9. Comparisons with Mack's (1975, 1984, 1986) computational results at R = 1500, for 
an insulated wall. The dashed curve is as in figure 5. 

M m  

M ,  9 1 (the two processes are found to match) as follows. At small 52 - M G 2 b ,  
a - M z 3 3 ,  for /3 of order unity, and so 

1 "  

i!i &f p = (Ai ' /K)  (to), 5, - if (4.4) 

from (2.12). Neutrality occurs at finite b,3, the growth rate is then positive for 
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FIGURE 10. The hypersonic limit, from Case I of $4, showing the spatial growth rates and their 
maxima. 

higher G, but as G +  co the growth rate continues to increase. This follows from 
inserting the asymptote 

(Ai’ /K)  (6,) - -to - COB as +-it  co 

into (4.4), which yields the results 

(4.5) 

&, - B/p, -2 ,  - Bi/q2p2 (G > 1). ( 4 . 6 ~ )  

A second stage therefore takes place, a t  frequencies D increased to 0(1), in which 

01 = M-,1oi0+M-,2&, + . . . 

&, pz = qp2- Oi$, 

Oil = ~ - ~ & ~ ( p ~ - i i ~ ) ~ z  exp (-$xi)! 

and, from substitution into (2.12), we obtain the relations 

(4.66) 

( 4 . 6 ~ )  

(4.6d) 

fixing &, (real), &, (complex) in turn, for given 0(1) values of P,D. The relations 
(4.6c, d )  confirm the structure of the second hump during the current stage since 
- & , , + O +  at  the two extremes of small and large D, matching ( 4 . 6 ~ )  and the cut- 
off, Case IV  below, respectively. The graphs of &,, &, versus D are drawn in figure 11.  
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FIGURE t1. The second hump of instability in hypersonic flow, from (4.6c, d ) .  

Further, the maximum growth rate from this second hump occurs when 2, = (20)max, 

( 4 ) m a x  = P/2.\ /2,  Qmax = P2/2/7 ,  (4.7a) 51 = amax, where 

giving the maximum ( -&)max = 7;/[2?/].  (4.7 b)  

Thus the main instability predictions for the second hump, at large M,, may be 
expressed as a 7; R2 

( 4 . 7 4  

which apply for p 2 M ,  ,> 1 (equivalent to p >> 1) .  Comparisons of ( 4 . 7 ~ )  and (4.2) with 
the earlier computations (spatial and temporal) are shown in some of the earlier 
figures and are seen to be very favourable even a t  moderate Mach numbers. 

Further repercussions from the hypersonic limit are discussed in $5. 
Case 11: transonic $ow When M ,  + 1 + and the transonic regime is approached, 

the principal area of concern centres on 

( a , / ,  a)  = (m-)a*, m-i / * ,  m - t ~ * ) + .  . . , ( 4 . 8 ~ )  

where the maximum growth rate occurs. Here a*,p*,SZ* are 0(1) and m = 
(M:-l)t is small, so that (2.12) reduces to the relation 

(ia*)%(a*2+/*2) = (Ai’/K)((,*)/*, (,* -iiQ*/a*I, (4.8b) 

giving the results in figure 12. Essentially, the streamwise pressure gradient aP/aX 
is now negligible in the upper deck : cf. hypersonic flow in Case I. The transonic-limit 
prediction (4.8b) agrees well with the earlier results as M ,  falls: see the figures. For 
small /*, the solution of (4.8b) focuses around a* K /*:,51* K /*+, (,* - 1, to provide 
a merging with the extra regime noted later. As /* increases the scaled growth rate 
-a: attains its overall maximum, the double hump of instability appears and 
eventually the second hump begins to dominate at larger p* values. This is supported 
by a large-/* analysis which, using (4.5), shows that 

a* N /*a,*+/*-la:, GI* - /*2S2sz,* (for /I* % I). ( 4 . 9 ~ )  
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FIGURE 12. The major transonic limit, from (4.8b), showing the spatial growth rates and their 
maxima. 

Here a,* (real), a: (complex) are given by 

"0*("0*2+ 1 )  = Q,*, (4.9b) 

(4.9c) 

in turn, as shown in figure 12. The maximum growth rate for this second hump is 
encountered when at2 = [2 d10-51/15, giving the values 

a: = at2 exp (-3~i)/n,*t(2~,*~ +Q,*) 

a: = 0.297 16, -ari = 0.292 11,  52: = 0.32340 (at  max.). ( 4 . 9 4  

Hence the general prediction for the second hump, as M ,  -+ 1 + , is 

(ar)max = ( - ~ i f m a x  = (-a'i)pl Q,, = ~ Q , * ( M :  - I);, (4.9e) 

along with the numericaI values in (4 .94 ,  provided /3 > (ML-  l)-i.  The predictions 
(4.9e) for the transonic limit (second hump) again agree well with the earlier 
calculations a t  smaller M ,  values, as the figures indicate. 

An extra, distinct, regime is also present a t  much smaller spanwise wavenumbers 

(M2, - 1): ' 

p, we note, where a,  i2 are O(1) but p - rnp0 with Po of 0(1), thus reducing (2.12) to 
the eigenrelation 

(4.10) it a; = (Ai'/K) (to) (pi - a2)i. 

For these transonic modes the spanwise pressure gradient W / a Z  has a diminished 
role in the lower deck and the typical wave angle is small, of order m. This regime 
is fairly minor, however, as it yields a one-hump instability curve (figure 13) with 
maximum growth rate -ai only of order unity as opposed to the large O ( m f )  growth 
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FIQURE 13. The minor transonic limit (4.10), which approaches the major one of figure 12 as /l 
becomes large. 

rates holding in the regime of (4.8 b) .  Again, as 52 becomes large a, + Po - , ai + 0 and 
the cut-off description in Case IV  below comes into force. 

Case III extreme spanwise wavenumbers We address first here the properties of 
(2.12) when the spanwise wavenumber /3 is large, for general Mach numbers. The 
asymptote (4.5) implies that the strongest effect then arises a t  the higher frequencies 
where 

(4.1 1 a) 

with a, (real), a1 (complex), Q, (real) all of order unity. Substituting into (2.12) we find 
the results, using m2 = M & -  1 again, 

aO(l +a;) = ~ , [ l / m ~ - a ~ ] ~ ,  (4.11b) 

a1 = a~f2;~exp(-~xi)(1+a~)(l/m2-a~)/[(3a~+l)/m2-2a~], ( 4 . 1 1 ~ )  

controlling a,, a,. Since -ali --f 0 + a t  the two ends Q, + 0 (where a, - Q,/m) and 
Q, + co (where 01, + m-l+ ) the maximum growth rate here occurs a t  an O( 1) value 
of Q,, thus capturing the second hump of instability. This is drawn in figure 14. The 
limiting predictions (4.11 a-c) for the second hump are compared with the previous 
computations in certain of the earlier figures and the agreement is seen to be very 
good at the larger /3 values. 

In addition, (4.11 a-c) agree with (4.9a-c) for the transonic flow a t  small m and 
with (4.6b-d) for the hypersonic case at  large m. 

The second extreme to consider is that of small p, again with general 0(1) Mach 
numbers. This extreme is covered in fact by the formula ( 4 . 1 3 ~ )  below, governing the 
cut-off stage, Case IV, since the formula applies for P - t O  with the other parameters 
M,,Q kept fixed. That trend for decreasing p is in good agreement with the 
computational results of $3. 

CI = /3ao+p-1a1+. . . , Q = p252,, 
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*o 

FIG~JRE 14. Sketch of the main properties of the  second hump of instability in supersonic flow, 
for large /J', from (4.1 1 a*). 

Case I V :  the cut-off A cut-off happens when a approaches the upper constraint 
P/m of (2.14) and this is considered here for general values of P,M, ,  although the 
cut-off does enter in other circumstances such as in Case I11 above. Generally, as 
a + P / m  - , the frequency 0 --f 00 and I t,, I + 00, with 

a = p / m - 3 + 6 z a 1 +  ..., 0 = 5-1 4, (4.12) 

where 5 is small and real. So (2.12) with (4.5) leads to  the successive relations 

d 2 d O  = M2,(m/P)-;,  m02, = 2&:/3 exp (-$xi), (4.13a, b)  

fixing do, 02, respectively. The cut-off is governed therefore by the behaviour 

( 4 . 1 3 ~ )  

which applies for the range 52 % 1 usually but for other ranges when M ,  and/or P 
takes an extreme value. The main trends from (4.13c), 

( 4 . 1 4 ~ )  

are in agreement with the computations as 0 increases, as the previous figures show. 
The corresponding trends near cut-off for temporal instability can also be deduced 
from (4.13 c )  and give 0, + co ,0, + 0 in the form 

0, - (P/m)f (P/m-a)-i, Qi - ($m/P):M-,'(P/m - a); (4.146) 

as a+p/m from below, with a real, and again the agreement with the numerical 
work of $3  is seen to be good in the temporal-instability figures as a approaches its 
maximum value P/m. 

Case V :  high-frequency waves For most Mach numbers, high-frequency waves 
where 0 4 1 are associated with relatively small growth rates as given by ( 4 . 1 3 ~ )  but 
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high wave speeds and wavenumbers lying outside the range of (4 .13~)  also exist. 
Generally for SL 9 1 we may take 

(a ,  p) = SLt(a,, Po) +a-f(a,, p,) + . . . , (4.15) 

for the 0(1) wave angles which are of most interest, and then (2.12) gives the results 
(cf. (4.11)) 

( 4 . 1 6 ~ )  

ala,(2m2a4,(a2,+~2,)+~~>+~oa2,~1(2m2a2,(a~+~2,)- 11 = (a2,+Pt)2m2aE exp (-$ti), 
(4.16b) 

controlling a. (real), 0 1 ~  (complex) as po,P1 vary. These are the supersonic-flow 
analogues of the eigenrelations used in the nonlinear high-frequency theory of Smith 
(1985, 1986), Smith & Stewart (1987) for an incompressible boundary layer. In  
contrast, high-frequency waves for smaller spanwise wavenumbers p such as p of 
O(1) are governed by the cut-off analysis in Case IV above which leads to (4 .13~) ;  
indeed, as a check, the results (4.16a, b )  tend towards ( 4 . 1 3 ~ )  as Po is reduced and 
then a. -+Po/m, indicating the cut-off arising a t  reduced wavenumbers as required. 

Case V I :  the second instability mounds We conclude this section by commenting 
further on the features of the second humps of instability found computationally and 
analytically. These humps dominate the growth-rate response at the larger spanwise 
wavenumbers p, for arbitrary Mach numbers, as well as dominating a t  most P for 
large Mach numbers for instance. Their character is inviscid to leading order but 
viscous-inviscid interaction is still necessary to produce the relatively small growth 
rates present a t  higher order. The second instability humps are very amenable to 
analysis, as in Cases 1-111 above, and so while the first humps are found to produce 
the overall maximum in the linear growth rates a t  a given Mach number, the second 
humps may well allow more progress to be made on the nonlinear front (as an 
alternative to full computations of the nonlinear system (2.3), (2.6)) and thus may 
yield somewhat more insight into the compressible transition process. 

5. Further comments 
The structural approach set out in $ 2  provides the rational basis for the first modes 

of instability in the supersonic boundary layer (see also the subsonic version below) 
and confirms their viscous-inviscid interactive nature, typical of Tollmien- 
Schlichting waves. I t  is now well accepted that in general only the underlying 
assumption of the Reynolds number Re being large can make the parallel-flow 
approximation valid in strict terms, as distinct from its use in the Orr-Sommerfeld 
approach at finite Re. This is for the (unstable) three-dimensional supersonic waves 
directed outside of the local wave-Mach cones (see (2.14)), of course, whereas the 
three- and two-dimensional viscous-inviscid waves less obliquely inclined, if 
unstable, have streamwise lengthscales of O( 1 ) and so are always non-parallel-flow 
modes, a feature which, again strictly, renders the previous Orr-Sommerfeld results 
for these first modes invalid even at  large Re. Further work on these non-parallel lcss 
oblique modes is in progress by R. I. Bowles a t  University College London. Again, 
the agreement between the present treatment and previous results, for the 
appropriately oblique first modes, is fairly good in qualitative terms, as regards the 
wave angle of maximum growth for instance, and it may prove helpful to extend the 
comparisons, e.g. to precise values of the growth rates, perhaps using further terms 
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FIGURE 15(a,b) .  For caption see facing page. 

0 

in the asymptotic series as in Smith (1979a, b) .  Another type of numerical extension 
also seems called for, however, namely to an unsteady interacting-boundary-layer or 
related method at  finite Re, for which the present approach provides some more 
encouragement. 

The triple-deck structure used describes only the first mode, whereas the second 
mode, a shorter-scale predominantly inviscid one unhindered by non-parallelism, 
tends to dominate in terms of spatial or temporal growth rates a t  increased Mach 
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numbers M,, according to the Orr-Sommerfeld results. The first modes are 
nevertheless of much interest physically and theoretically at all M,, in particular 
with regard to transition: see also below, and we note further Malik’s (1987) 
suggestion that the first mode may dominate transition for an adiabatic wall a t  Mach 
numbers up to 7 .  An aspect of unknown significance, and perhaps only academic 
interest, found here is the double-mound formation in all the growth-rate curvcs for 
first modes, an aspect that is summarized a t  the end of 94. The first humps always 
give the maximum first-mode growth rate overall for a prescribed Mach number but, 
given that in practice the boundary-layer instability and transition (cf. further 
comments below) depend largely on the form of the input disturbances upstream, the 
second hump could sometimes play a major role, for example if the input disturbance 
contains mostly high wavenumbers. These second humps tend to  become inviscid in 
the main, even though their growth rates are due to viscous forces, and there is a 
possible connection with Mack’s inviscid second modes arising a t  higher Mach 
numbers. 

The extremes of the Mach-number range are also intriguing and suggest some 
further developments, especially the hypersonic extreme where M ,  becomes large. 
The lower, transonic, extreme for M ,  + 1 + leads into a new transonic regime which 
has been investigated by 0. R. Burggraf and the present author (see also below), who 
find that there the link is established with subsonic stability properties as M ,  + 1 -. 
The subsonic counterpart, which we have also studied here, has the term p2/ 
(M2,- 1)  -az in (2.12) replaced by a2 +p2/(l -M2,) .  Its  properties are summarized in 
figure 15: see also some earlier figures, and note that as the Mach number increases 
from zero the maximum normalized growth rate is for the two-dimensional first mode 
until the Mach number reaches approximately 0.5, after which the maximum 
switches to oblique waves. The subsonic version thereafter behaves much as in Case 
I1 of $4 as M m + l - .  Then, during the new transonic stage the three- and two- 
dimensional modes directed within the wave-Mach cones become elongated with 
increasing M ,  - 1,  eventually to emerge as non-parallel modes of O( 1 )  wavelength 
(and involving even larger scales, according to R. I. Bowles’s subsequent research) in 
the supersonic regime as M ,  - 1 rises to O( l), in contrast with the three-dimensional 
rnodes whose directions lie outside the wave-Mach cones and which emcrge to form 
the three-dimensional first modes of the supersonic regime studied in the present, 
work. In  the hypersonic extreme where M ,  9 1 another new feature enters the 
reckoning, as follows. From Case I of $ 4  the principal range of the streamwise 
wavenumber concentrates into a - M&z a t  large M ,  (see (4.1)), so that the unsealed 
wavelength L,( a a-l) involved then increases in the form 

in view of the scaling in (2.1). But under many conditions (see Stewartson 1964 and 
also below), including the insulated-wall example, the temperature ratio Tz/Tz  
increases like M k  for the boundary layer a t  large M ,  and $0 (5.1) implies that L, - 
Re-:Mt. Hence a new regime is encountered where 

L,+O(l),  M ,  -Re&, (5.2) 

and the wavelength of the main first modes grows to become comparable with the 
O( 1) development length of the basic boundary laycr, thus inducing substantial non- 
parallel-flow effects. In  this new hypersonic regime, then, where the parameter 

r~ = M,/R& (5.3) 
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FIGURE 16, Sketch of the new hypersonic regime and its double structure when M ,  = Re& 
(from IS), where non-parallel-flow effects become substantial. 

is O( l),  the basic steady two-dimensional boundary layer simply has increased 
thickness y -Re-$ (from ( 2 . 4 ~ )  with (5.3)) but the three-dimensional first modes of 
instability take on a novel structure as sketched in figure 16. This is because the lower 
deck, i.e. critical layer, expands in thickness like Re-%kf;i(Tz/Tz)i ad (from (2.2), 
(2.11u)), i.e. RedMS, to coalesce with the main deck of width Re-i(T:/Tz)[-IZe-; 
ML] exactly when 2 reaches O( 1) ; meanwhile the upper deck contracts in width like 
Re-sM;: (T:/T:)fa-l [ -  R e d & $ , ]  for these dominant modes, from (2.5), (2.10a), to 
yield an outer width of O(Re-n) in the stage - 1. Hence the y-variation becomes 
two-tiered (y - Re-&, y - R e d ) ,  the x-scale is 0(1), the z-scale contracts to z - Re-& 
(from (2.1), (4.1), (5.3)), the streamwise-pressure-gradient disturbance becomes 
negligible in the boundary layer, the timescale involved rises to O(1) (from (2.1), 
(4.1), ( 5 . 3 ) ) ,  the maximum growth rate is for very oblique waves at nearly 90" to the 
free-stream direction, the viscous-inviscid interaction continues, but the waves are 
now crucially affected by non-parallelism. Other instability modes of interest such as 
the second-hump ones in (4.6) lead to other higher hypersonic regimes, as can 
excessively cooled or heated walls ; we observe also that the regime (5 .3)  occurs at 
Mach numbers below the well-known hypersonic-viscous range M, N Re; where the 
basic flow past the flat plate changes considerably (Stewartson 1964; Neiland 1970), 
introducing an outer shock layer, but the regime (5 .3)  for the main first modes seems 
the crucial one and i t  merits further study (N. D. Blackaby at UCL is currently 
conducting such a study). 

Further investigation is also called for in the case of blunt-nosed bodies, for 
longitudinal vortices, with which the oblique Tollmien-Schlichting waves have a 
close connection, and for the impact of the restriction M ,  < Re& (implied by (5 .3))  
on normal-mode decomposition, particularly regarding previous Orr-Sommerfeld 
computations. The above restriction reads 

M , < R &  or M,+&, or M*+@ (5.4) 

in terms of the local Reynolds numbers R 3 Re: and R, based on the boundary-layer 
thickness, since R, ReiM2, in the hypersonic regime. Similar restrictions hold for 
other wall conditions. At a global Reynolds number Re of 2.25 x lo', say, 
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corresponding to R = 1500, the restriction (5.4) can be interpreted as meaning that 
the Orr-Sommerfeld approach holds only for M ,  4 4.3, thus casting some doubt on 
the computations above about M ,  = 2 shown in figures 5 and 9 and casting much 
doubt on the many Orr-Sommerfeld results presented a t  higher M ,  values up to 10 
and beyond. Such doubt obviously becomes even more severe a t  the lower Reynolds 
numbers R which are sometimes used in the computations, and it would seem to 
account for most of the differences in figures 5 and 9. 

A move into the nonlinear disturbance properties in subsonic, supersonic and 
hypersonic boundary layers is also suggested by the present work, to shed more light 
on the compressible transition process. Here the problem posed in (2.3), (2.6) and the 
limiting cases described in the previous section provide the basis for computational 
and analytical studies of the effects of nonlinearity, including nonlinear interaction 
with longitudinal vortices, with the various first and second modes present and with 
cross-flow instabilities, some of which have already been addressed in recent work on 
the incompressible regime. We would draw attention here also to the nonlinear 
break-up phenomenon (within a finite time t", which is applicable to (2.3), (2.6) among 
other interactive flows and is described by Smith (1988a), following Brotherton- 
Ratcliffe & Smith's (1987) and Smith's (1988b) studies of interactive nonlinear 
singularitics. 

Recent experiments concerning the first modes among other aspects are described 
by Maslov (1987, and private communication) and Lysenko & Maslov (1984) and 
these seem to be not inconsistent with the present theory. Somewhat related 
theoretical studies done or being done recently and independently are described by 
Duck (1987, and private communication) and Ryzhov (1987, and private 
communication). 
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